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J. Phys. A :  Math., Nucl. Gen., Vol. 6, January 1973. Printed in Great Britain. 0 1973 

Relativity and spin-orbit interaction in nuclei? 

V A Krutov and L N Savushkin 
Physical Research Institute, Leningrad State University, Leningrad V-164, USSR 

MS received 5 April 1971, in final revised form 21 August 1972 

Abstract. It is shown that the observed spin-orbit splittings in the atomic nuclei may be 
explained theoretically if one takes into account the relativistic character of the nucleon 
motion in the bound many-nucleon system. The relativistic corrections were obtained from 
the approximately relativistically invariant (to within terms in 0 2 / c z )  Breit-type equation for 
two nucleons. Two-particle interactions were taken in the form of one-boson-exchange 
potentials which reproduce well the nucleon-nucleon scattering data and which include 
pseudoscalar, scalar and vector mesons and resonances. The calculations of the doublet 
splittings of different single-particlt levels in 41Ca and 'O'Pb were carried out, the values of 
the nuclear average field being calculated as well. Agreement with experiment is reasonably 
satisfactory. 

1. Introduction 

In all modern 'microscopic' nuclear models the states of a single-particle potential are 
used as a basis, the operator of the single-particle spin-orbit interaction being an essential 
part of this potential. However, although many years have passed since the spin-orbit 
interaction, which appeared to be the starting point for the explanation of the 'magic 
numbers' and shell model creation, was introduced in nuclear physics by Goeppert- 
Mayer (1949,1950) and Haxel et a1 (1949,1950), up to the present the origin of the spin- 
orbit interaction in the nucleus is not quite clear. 

At first it was natural to interpret this interaction by analogy with that of the atom, 
where the greater part of the observed spin-orbit coupling is treated as a relativistic 
correction to  electron motion in a self-consistent average field (the Thomas coupling). 
Furry (1936) explained the opposite signs of the doublet splittings in atomic and nuclear 
spectra as a result of different types of interaction of particles : the electrostatic potential 
experienced by an electron in an atom transforms as the fourth component of the vector 
electromagnetic field : whereas, following Furry, we may regard the nuclear potential 
to be a scalar. However, these early attempts to ascribe a relativistic origin to  the spin- 
orbit interaction in the nucleus were given up when the calculations showed that the 
Thomas coupling gives doublet splittings that are 30-40 times smaller than those actually 
observed in the nuclei (Fernbach 1958). 

In the present paper the authors return to  the relativistic treatment of the single- 
particle spin-orbit interaction in the nucleus but on a basis different from that used by 

t Preliminary results of this investigation were reported to the 21st Annual Conference on Nuclear Spectro- 
scopy and Structure of Atomic Nuclei, Moscow 1971 (Krutov and Savushkin 1971). 
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previous authors. The principal points of our treatment a re :  (i) the derivation of the 
relativistic corrections (of the order v2/c2)  t o  the relative motion of two nucleons coupled 
in the nucleus by the two-particle conservative forces, (ii) inclusion of the corrections 
obtained into the conventional pattern of the many-nucleon problem. Further, we derive 
the single-particle spin-orbit operator (in this point the procedure is similar t o  that 
applied in the phenomenological approach to  the problem (Blin-Sloyle 1955)) and using 
this operator we calculate the spin-orbit splittings in the near magic nuclei. Further- 
more we calculate the average nuclear field (in the Hartree approximation) on the basis 
of two-particle forces. We have utilized two-particle forces of different types. We have 
started from the forces of the conventional type which are commonly used in the shell 
model calculations etc. These forces were found to give too  small spin-orbit splittings, 
though leading to  reasonable values of the average field. Then we used as two-particle 
forces one-boson-exchange potentials with different mesons and resonances taken into 
account. Lately these potentials have been successfully applied (see eg Green and Sawada 
1967, Ueda and Green 1968, Ingber 1968, Bryan and Scott 1969, Ingber and Potenza 
1970) to  the description of nucleon-nucleon scattering within a wide scattering region 
(&400 MeV incident lab energy), deuteron data etc with a moderate number of adjustable 
parameters. It was found by us (see 9 4) that such potentials lead to  rather reasonable 
values of the spin-orbit interaction and  a t  the same time give the values of the average 
field close to  the experimental values. 

2. Relativistic corrections in the many-nucleon problem and spin-orbit potential 

It is obvious from the following simplified estimate that the nucleons in the nuclei may 
move with high (semirelativistic) velocities : i f  the depth of the potential well is assumed 
to  be equal t o  5&60 MeV, the kinetic energy of the ‘highest’ nucleons being equal to 
4&50 MeV, then we have v ‘v $c. 

If one considers the ith nucleon as moving in the field formed by the two-particle 
interactions y k  with the other nucleons, that is, in the field V(i)  = Ck,k#i) y k ,  the relati- 
vistic equation describing such motion is the Dirac equation for a particle in an  external 
field V(i) .  Regarding the nuclear field V ( i )  as a scalar, the relativistic equation for a 
nucleon moving in the field V ( i )  is : 

where matrices a and j3 have a conventional form (Achieser and Berestetsky 1959), 
and  q5 is a four-component function composed of two spinors: ‘large’ component I) 
and ‘small’ component x (Achieser and  Berestetsky 1959). 

However, this manner of consideration is based on the assumption which is equiva- 
lent t o  a ‘freezing’ of the relativistic motion of all the nucleons with the exception of the 
‘test’ i nucleon. It is obvious that such an  assumption would not be proper. To obtain 
the relativistic corrections in a consistent manner, we shall consider the approximately 
relativistic equation (relativistically invariant t o  within terms in v z / c 2 )  for two nucleons 
interacting through the scalar potential y k  (we shall start from the scalar interaction 
since it is easier t o  explain the main features of our  description using this example). 
This equation was derived by Breit (1937) by analogy with the approximate relativistic 
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Breit equation for two electrons and  has the following form : 

where I’ik = r i -  Y k ,  - E = E + 2mc2 the total energy of the system. 
The wave equation (2) can be reduced to a n  equation for only the ‘large’ component $ 

correct t o  the terms of the order v 2 / c 2  (Achieser and  Berestetsky 1959, Breit 1937). 
In this case we obtain 

where 

8V;;’ contains all relativistic corrections which d o  not possess the form of V;; ;  (r are 
the Pauli matrices. 

In the centre of mass system p l + p k  = 0. Then taking into account the following 
identity : 

(r{; = ~ ( ( r , + ( T k ) + ~ ( ~  -(r k)’ (4) {i { I  

in the case of the central forces we shall obtain from equation (3b): 

where = ( Y , k  x p l k ) / 2 h  is the operator of the relative orbital motion of two nucleons. 
However, considering a many-particle system we must use equation (3b )  rather than its 
particular case (5). 

From equation (3a) for the many-nucleon system we have : 

Replacing, in ‘accordance with the conventional approach, C k ( k #  vk by the average 
field and residual interactions 

and  formally including the operator C:k(kf SV;;’ into the residual interactions, we get 
the following Hamiltonian for the ith nucleon : 

In nuclei t he j j  coupling is realized, that is, the spin-orbit interaction is stronger than the 
residual interaction. For  this reason it is possible, in the first approximation, t o  omit 
Kes(i) and to consider the expectation value ofthe spin-orbit interaction of the ith nucleon 
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with the remainder of the nucleons on the basis of the functions YC0)  = n k ( k #  ij * i o ) 3  
where $io) is the solution of the wave equation for the average field VJk)  : 

fp*p = & O )  ( 0 )  
k $ k  

Pki Hio’ = -+ Vav(k) 
2m (9) 

where the nucleon suffix denotes simultaneously the set of quantum numbers for a 
single particle. This expectation value gives the single-particle operator of the spin-orbit 
interaction : 

Further, in accordance with the usual self-consistency procedure one should take the 
eigenfunctions of the Hamiltonian 

as the basis functions and obtain : 

where Y ( l )  = II k ( k # i )  I)?), and so forth. 
Furthermore, in the self-consistency procedure following Vs:’(i) one should take into 

consideration both the correct symmetry of the states and the residual interactions, 
that is, performing the replacement 

(1 3a) 
i , k  

one should solve the wave equation for the complete Hamiltonian (we give it in the 
representation of the secondary quantization) : 

and li) being, respectively, the eigenvalues and eigenfunctions of the Hamiltonian 
H!’); a:(a,) are the operators of creation (annihilation) of a particle in the state i. How- 
ever, such a problem would be very cumbersome. For this reason, in the present paper 
we shall limit ourselves to the calculation of Vb:j(i) for the near magic nuclei, leaving the 
realization of the above mentioned program for the future. 

Let us consider the wavefunction Y(Oj = TI k ( k i  i )  $io’ of the spin saturated core which 
is formed by A - 1 nucleons, the ith nucleon moving outside the core. In this case the 
expectation values of Ck(kf i )  ck and C, ( , ,  , , p k  will be equal to zero, and we obtain 
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where 
x = r - v i  

p'O'(r) = l l / p ( v ) 1 2 .  
k ( k  # i )  

Expressing p(O)(v) in powers of x, limiting the expansion to the first three terms 

and taking into consideration the fact that because of the parity of the integrand only the 
term with Vp'O) contributes, we have 

Up to the present we have considered the case when K k  is a scalar interaction. We 
shall see in what follows (see $8 3 and 4) that a scalar interaction is insufficient for the 
simultaneous derivation of reasonable values of the spin-orbit interaction and the 
average field. That is why we shall generalize the consideration given above for the case 
of the two-particle one-boson-exchange interaction which includes the exchange of 
pseudoscalar (P), vector (V) and scalar (S) mesons and resonances. As was already 
mentioned in $ 1, one-boson-exchange potentials (OBEP) with P, V, S mesons taken into 
account have been widely used in recent years. In accordance with Green and Sawada 
(1967) for two nucleons interacting via OBEP instead of equation (2) we have 

where y 5  = f l y 1 y 2 y 3 ,  $ ( I  = 1 ,2 ,3 )  being the components of the matrix y = pa; zi is the 
isospin matrix of the ith nucleon. 

The interactions written out in equation (18) correspond to the exchange of pseudo- 
scalar (v%, V!;), vector (Vg , V:) and scalar ( Vyk, Vy;) mesons, which may be both 
isoscalars and isovectors. The concrete form of the functions v k  is considered in 5 4. 

Now we shall reduce (to within terms in c2/c2) equation (18) to the equation for the 
'large' component $ only (similarly to the reduction of equation ( 2 )  to equation (3a)). 
I t  is to be emphasized that in the case of vector mesons the operator of the Larmor type 

should be added to the operator of the spin-orbit interaction of the Thomas type 

h 1 dV: 
4m2c2 r ik  drik 

-___ -(vik x p i .  bi-rik x p k .  c/o. 

However, in the Hartree approximation the operator of the Larmor type makes no 
contribution to the single-particle spin-orbit potential for the nuclei having one nucleon 
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above the closed shells (in this paper we shall limit ourselves to  the consideration of such 
nuclei only). Taking into account all the aforesaid we shall obtain instead of equation 
(3a)  the following equation (the details of transformations of the operators may be found, 
for example, in the survey by Green and Sawada (1967)) : 

where 6Vi;' contains all relativistic corrections which do not possess the form of the 
spin-orbit forces. It should be emphasized that the relative signs of v:k and V ;  in the 
central (conservative) interaction and in the spin-orbit interaction are different : this 
fact appears to be very essential (see @ 3  and 4). Pseudoscalar mesons make no contribu- 
tion to the main terms of equation (21): they contribute only to 6VTil. 

In the case of the vector-isovector (eg p meson) the additional contribution of the 
tensor coupling to the spin-orbit interaction should be taken into account. Using 
equation (4) the sum of the operators (19) and (20) for the vector-isovector meson may be 
written in thc. following form: 

The tensor coupling will be taken into account, if the factor 3 in equation (22) is replaced 
by 3 + 4fV'/gV',fVT and gv' being, respectively, the tensor and vector coupling constants 
for the vector-isovector meson (Ueda and Green 1968, Ingber 1968). 

If we realize the same transformations which were carried out in deriving equation 
(17), we shall obtain the single-particle spin-orbit potential in the following form: 

where A - 1 = N + Z ;  rj is the projection of the isospin of the ith nucleon (7\/2 = +), 
where the positive sign corresponds to the proton). 

Thus, we obtained the single-particle spin-orbit operator of the Thomas form 
(equations (17) and (23)) with the gradient of potential replaced by the gradient of the 
matter density just as in the case of phenomenological introduction of the spin-orbit 
forces (Blin-Stoyle 1955). However, in contrast to the phenomenological approach 
(Blin-Stoyle 1955) we did not introduce the additional spin-orbit forces (with fitting 
parameters) into the nucleon-nucleon interaction. In formulae (17) and (23) V,, or 

are the conservative nucleon-nucleon interactions, that is, formulae (17) and (23) 
are rather 'rigid': all magnitudes in these formulae can be obtained from the data inde- 
pendent of the spin-orbit interaction, and the agreement (or absence of agreement) 
with experiment may serve as a verification of our initial assumption concerning the 
relativistic origin of the spin-orbit interaction in nuclei. 
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3. Average field and spin-orbit interaction 

The definition of the average field by equation (7) is actually symbolic. Now we shall 
specify it. 

Using the wavefunction in the Hartree approximation 

(where 5 stands for space, spin and  isospin variables), we shall define the average field 
Ev(i)  as the expectation value of the operator Ck(kf i) (see also Krutov 1972) : 

c vi, = V v N +  V e s ( i )  = J dtJ$t(tJ)vk(t> t ' ) $ k ( t ' ) +  Vres( i )  
k(k  f i) k < A ( k #  i )  

where the superscripts n = 0, 1 , 2 , .  , . stand for the order of approximation of the self- 
consistency procedure. 

We shall utilize here, as well as in the calculations of the spin-orbit interaction, the 
short range approximation. Then, limiting ourselves in the expansion of the type (16) 
to  the first term and  using either the scalar interaction K k  or  replacing, in accordance with 
equation (21), Kk  by OBE potentials we shall obtain : 

It should be noted that calculating the average field we limit ourselves to  the static 
limits of the OBE interactions, the corrections which are not taken into account are either 
small o r  are equal t o  zero (for the nuclei considered) in the Hartree approximation. 

Now we shall compare equations (17) and (26a) on the one hand and  equations (23) 
and (26 b) on the other. These pairs of equations differ essentially from each other. In 
the case of equations (17) and ( 2 6 ~ )  we come to  the result of the Thomas coupling. 
Actually, performing integration by parts in equation (17) 

3 x 3  dx = - 3  lom d x  

and taking into account equation (26a), we obtain from equation (17) 

h 2  1 dVav 
V::)(i) N -~ - - 1 .  Is. 

4m2c2 r d r  

Thus, in the case of equations (17) and  (26u) it is impossible to  derive simultaneously 
(ie, t o  obtain from the same two-particle forces Kk) the values of K,,(i) and  Vav(i) which 
are in reasonable agreement with the experiment. 

At the same time such derivation is possible in the case of equations (23) and  (26b). 
Indeed, in accordance with equations (23) and  (26b), the contributions of vector and 
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scalar mesons to  the spin-orbit interaction have the same signs and their contributions 
to the average field have opposite signs. Thus, the situation may occur when these 
mesons compensate each other (to a considerable extent) contributing to the average 
field while their contributions to  the spin-orbit potential are summed up. 

Now we shall discuss the possibility of taking into account the exchange forces in 
calculations of Vav(i). Let the two-particle interaction have the form of the mixture of the 
forces of Wigner, Bartlett, Heisenberg and Majorana : 

i. (1 +oi. q J ( l  +Ti. z/o 
4 -GM 

where Gl\,,B,H, are the strengths of the components normalized by the usual condition : 

G,+G,+G,+GM = 1. 

Then from equation (25) we have in the Hartree approximation 

the sense of the Kronecker symbols being evident. Assuming, as we have done previously, 
that the interaction is a short range one, instead of equation (26a) we shall obtain : 

, 

where the ith nucleon is considered to  be a neutron (for a proton N should be replaced 

As for consideration of the exchange forces in equation (17), we shall use (in $4, 
calculating K,,(i) in accordance with equation (17)) the interaction (28), taking into 
account the transformation from equation (17) to (27). However, we shall attach only 
illustrative importance to  this consideration of the exchange forces in the framework 
of equation (17). Indeed, although equation (28) is the most general form of notation of 
the conservative central forces, we cannot use equation (28) in equation (17) directly, 
since equation (17) is obtained from the semirelativistic equation (2), where the exchange 
character of vk is not assumed. The proper consideration of the exchange components 
of the nuclear forces in calculations of &(i) can be carried out only when the exchange 
forces.are taken into account in the initial semirelativistic equation. It was just this 
procedure that was realized in equation (18) and  that is why in the notation of i&(i), 
in accordance with equation (23), the exchange character of the nuclear forces is properly 
taken into account. 

by Z ) .  

4. Calculations and discussion of the spin-orbit splittings and average field for near magic 
nuclei 

Here we shall calculate the spin-orbit splittings of different states in the near magic 
nuclei 41Ca and  'O'Pb, as well as the values of the average field for the same nuclei. 
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According to  equation (17) and equation (23), the doublet splitting of the single-particle 
level In, I = j r i )  for the nuclei with one nucleon above the closed shells is equal to 

where V,,(x) = V,,(x) in the case of equation (17), and 

in the case of equation (23), the functionf,,(r) is the radial wavefunction of an odd nucleon 
in the field T/a,(r). 

At first we shall discuss the calculation of the first integral in equation (31). Similarly 
to Blin-Stoyle (1955) we utilize the following model : an infinite well of radius R is taken 
for obtaining the functionsfJr), and the nuclear density is taken in the trapezoidal form 
(close to the realistic Fermi distribution) : 

for 0 < r 6 R(1-r) 
(32) 

R(1-?) < r < R,  

where r is the relative thickness of the surface layer in which the density decreases from 
po to zero. We assume that R = 1.33A' fm (Blin-Stoyle takes the nuclear radius equal 
to 1.45A'/3 fm), since this value of R for r = 0.4 corresponds to the half density radius 
R,, ,  = 1.07.4' fm. The latter value is close to the experimental values of R l ) 2  of the 
charge distribution in the nucleus (Hofstadter 1956). 

To estimate the accuracy of the approximations made in the derivation of fnl(r) 
and p( ' ) ( r ) ,  we carried out calculations of the li level splitting in ,09Pb using the Woods- 
Saxon potential and the Fermi distribution of density. The wavefunctions for the li, ,  
and li,,,, neutron states were taken from the paper by Blomqvist and Wahlborn (1960), 
and the Fermi density distribution parameters 

(33) 

p o  = 0.17 fm- j ,  a = 0.54fm, R,,, = 6.5 fm, were taken from the monograph by Bohr 
and Mottelson (1969). I t  was found that for the l i  level in '09Pb the values AEflL calcu- 
lated with the Fermi distribution and with the wavefunctions of the Woods-Saxon 
potential differ only by 12% from the values AEfll calculated in our simplified model 
(with 7 = 0.4). Therefore we consider the model which uses the rectangular well and the 
trapezoidal density distribution to be a satisfactory model for practical calculations 
(since ambiguity in the choice of the two-particle interaction leads at present to a con- 
siderably larger uncertainty in the final result than 12%) and we shall utilize i t  in what 
follows. 

Now we shal! proceed to calculations of AEnL and V,, . At first we shall consider in 
equation (31) the case with q k ( x )  = V k ( x ) ,  and in calculations of the average field we 
shall use equation (30) as a refined version of equation (26a). We shall utilize the follow- 
ing two variants of the conservative forces. 
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(i) The Volkov (1965) forces which were used in calculations of the ground state 
energies of the l p  shell nuclei : 

u1 exp -1 + U ,  exp - i ;I "i} B: (34) 

where G ,  = 0.6, v1 = 60.6 MeV, vz = 61.1 MeV, B ,  = 1.8 fm and B ,  = 1.01 fm. 
(ii) The Barker (1966) exchange mixture used in intermediate coupling shell model 

calculations ; these forces have the form of equation (28) with the following values of the 
parameters : 

v(x)  = - U,, exp( - (x/B)'}, U,, = 70.8 MeV, B = 1.48 fm, 
(3  5 )  

G ,  = 0.075, G ,  = 0.5, G,  = -0.325, G ,  = 0.75. 

In table 1 we present the values of the spin-orbit splittings AEnL obtained with the 
Volkov and Barker forces for a number of states of 41Ca and ,09Pb (we assume that 
z = 0.4). The depths of the average field Ev (within the interval 0 d r d R(1-7)) 
obtained for the same nuclei, in accordance with equation (30), are presented in the table 
as well. 

Table 1. The neutron spin-orbit splittings and average field values in the case when the 
Volkov and Barker forces are used as two-particle interactions? 

Form of the 
two-particle 
interaction 

Volkov 
forces 

Barker 
forces 

Experimental 
data 

AE11(41 Ca) 
AE,,(41Ca) 
AE,,(Z09Pb) 
A E i(2 O 9  P b) 
AE,,(209Pb) 
f7av(41Ca) 
f7av(209Pb) 
v;tf(41 Ca) 
V:t'(ZOgPb) 

0.621 
0,148 
0.129 
0.416 
0.073 1 

- 73 
- 64 
- 58.1 
- 50.9 

0.597 
0.142 
0.139 
0,446 
0,0782 

- 70 
- 68.7 
- 55.7 
- 54.7 

6.50 
2.00 
247  
4.59 
0.98 

- 

- 46.1 
- 53.4 

t All values are given in MeV. The experimental values of AE,, for 41Ca are taken from Pear- 
son et al (1969), those for '09Pb from Gillet et al (1967). The experimental values of V:;' 
for 40Ca and zO*Pb are taken from the optical model analysis ofthe 30 MeV proton scattering 
(Greenlees and Pyle 1966). 

According to the approximate equations (26) and (30), V,;(v) reproduces the form of 
p ( v ) ;  for this reason the average field obtained here differs slightly in width from the 
conventional empirical potentials. This difference, certainly, will manifest itself in the 
comparison of the depths of the potentials. To perform the proper comparison of our 
results with empirical data, we utilize the following relation: 

Cb(Rl,Jz = viff(R$)2, (36)  

Reff - - l.2A1'3 fm (the same or close half-value radii of the central potential are used in 
and (in table 1 and in other tables) we give the values VEt' as well, considering 

the optical model analysis, see, for example, Greenlees and Pyle (1966)). 
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As is seen from table 1 the values of the spin-orbit splittings obtained with the Volkov 
and Barker forces are smaller by one order of magnitude than the experimental splittings 
whereas the calculated average fields prove to be close to the empirical fields. We have 
already discussed this discrepancy in 9 3. 

Now we shall proceed to consideration of the one-boson-exchange potentials of 
meson theory as a two-particle interaction. In practical calculations we have utilized 
two PSV variants of OBEP, which we shall discuss separately. 

At first we shall consider the calculations performed with the PSV variant of OBEP 
which was applied by Green and Sawada (1967) to the description of the nucleon- 
nucleon scattering data within the energy region 0-330 MeV. Green and Sawada 
denote this variant as a one-parameter model, in what follows we shall call this inter- 
action the forces of Green and Sawada. These forces achieve good fits to scattering 
data, they reproduce well the S wave shifts and all higher partial wave shifts with the 
exception of the 'P, and, to a lesser extent, the 'D, wave (Green and Sawada 1967). 
In this case the functions V g  and V &  have the form : 

with the following values of the parameters : 

pw = 783 MeV, ps = 600 MeV, A, = A, = 2m = 1880 MeV, 

U ,  = U, = 20m, g,Z = g i  = 14.7, g; = gS"(Po/Pd2 = 25. (37b) 

In table 2 we present the values ofthe spin-orbit splittings and average fields obtained 
with the two-particle forces of Green and Sawada (the calculations are carried out 
for three values of 7). 

Table 2. The spin-orbit splittings and average field values for the case when the forces of 
Green and Sawada are used as two-particle interactionst 

Thickness 
of the surface Experimental 
layer (5) 0.3 0.4 0.5 data 

AE,,(4'Ca) 6.30 9.32 11.1 6.50 
AE, p(4 Ca) 2.18 2,22 2.20 2.00 

AEli(Zo9Pb) 5.9 1 7.08 7.12 4.59 
AE,,(209Pbj 1.97 2.22 3.86 2.41 

AE,,(209Pb) 0.842 1.28 1.67 0.98 
Kv(41Ca) - 39.2 - 45.3 - 52.7 
pa"(' P b) - 39.2 - 45.3 - 52.7 
T/ :tf (4 ' Ca) - 34.8 -36.1 - 36.6 -46.1 

- 

__ 

V$f(zo9Pb) - 3 4 4  -36.1 - 36.6 - 53.4 

t All values are given in MeV. 

We have also utilized as two-particle forces the PSV variant of OBEP which was con- 
sidered by Ueda and Green (1968) (here we use their model 111, the results for the first 
two models being close to those for 111). These forces (we shall denote them as the forces 
of Ueda and Green) were applied by Ueda and Green to the description of the p-p and 
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n-n scattering data and the deuteron data (deuteron binding energy, quadrupole 
moment, magnetic moment etc), most of these data are reproduced almost quantitatively. 
The results of our calculations of AEnl and V,, obtained with the forces of Green and 
Ueda are given in table 3. 

Table 3. The spin-orbit splittings and average field values for the case when the forces of 
Ueda and Green are used as two-particle interactionst 

5 

Experimental 
0.3 0.4 0.5 data 

AE1J4'Ca) 1.64 242 2.90 6.50 
AE,,(4'Ca) 0.569 0.577 0.574 2.00 

AE,,('09Pb) 1.56 1.87 1.89 4.59 

%v(209Pb) -74.5 - 86.1 - 100 

V',tf(209Pb) -66.1 - 68.6 - 69.5 - 534 

AE2g(209Pb) 0,526 0.588 1.02 2.47 

AE3,(,O9Pb) 0,224 0.339 0.443 0.98 
R J ~ ' c ~ )  - 73.8 - 85.4 - 99.2 - 

- 

v;tf(41Ca) - 65.5 - 68 - 69 -46.1 

t All values are given in MeV 

As is seen from tables 2 and 3, rather satisfactory values both of the spin-orbit 
potential and the average field may be obtained in the case when the PVS models of 
OBEP are used. Certainly, all PVS models should be considered for the present as prelimin- 
ary ones since it is not quite clear which mesons and resonances should be included 
in OBEP. Therefore for the present our calculations do not allow us to make the indisput- 
able conclusion that the nuclear single-particle spin-orbit potential is of relativistic 
origin. But nevertheless our results may be considered as a telling argument in favour 
of such an origin. 

In conclusion we shall add the following. In a number of papers of one of the authors 
(see eg Krutov 1968, 1972, Krutov and Zackrevsky 1969) the semiphenomenological 
model of the nucleus was developed and applied successfully to the description of a wide 
range of manifold experimental data with a small number of adjustable parameters. 
However, in this model the basis Hamiltonian consisting of the single-particle potential 
and residual interactions is given in a parametric form, and not calculated. In the present 
paper the first step taken is to calculate this basis Hamiltonian, namely, starting from the 
nucleon-nucleon interactions we have calculated with reasonable success the average 
field and spin-orbit potential, that is, the main part of the single-particle potential 
(in the Hartree approximation so far). The authors believe that in a following paper 
they will be able to present calculations of the average field and spin-orbit potential in 
rhe Hartree-Fock approximation, to calculate the isobaric spin potential and to consider 
the isospin dependence of the spin-orbit potential as well. 
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